

Lecture 25

ex: Suppose that the joint density of X

and Y is given by

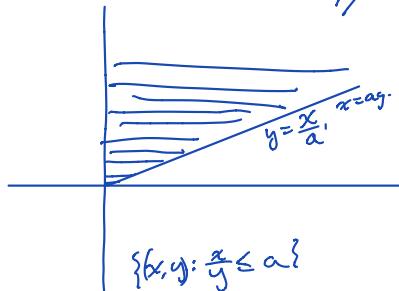
$$f(x, y) = \begin{cases} e^{-(x+y)} & 0 < x < \infty, 0 < y < \infty \\ 0 & \text{otherwise.} \end{cases}$$

Find the density function of X/Y .

Soln: First, we find the cumulative distribution function

of X/Y : For $a > 0$, we have

$$F_{X/Y}(a) = P\left\{\frac{X}{Y} \leq a\right\}.$$


$$\begin{aligned} &= \iint_{\substack{y \\ x/y \leq a}} e^{-(x+y)} dx dy \\ &= \int_0^\infty \int_0^{ay} e^{-(x+ay)} dx dy, \\ &\quad \{x, y: \frac{x}{y} \leq a\} \\ &= \int_0^\infty e^{-y} \int_0^{ay} e^{-x} dx dy \\ &= \int_0^\infty e^{-y} (1 - e^{-ay}) dy. \\ &= -e^{-y} + \frac{e^{-y(a+1)}}{a+1} \Big|_0^\infty \\ &= 1 - \frac{1}{a+1} \end{aligned}$$

Differentiating, we get $f_{X/Y}(a) = \frac{1}{(a+1)^2}$

We can also define the joint probability of n random variables:

$$F(a_1, \dots, a_n) := P(X_1 \leq a_1, \dots, X_n \leq a_n).$$

X_1, \dots, X_n are said to be jointly continuous

if there is a function $f(x_1, \dots, x_n)$ such that for some set $C \subseteq \mathbb{R}^n$,

$$P((X_1, \dots, X_n) \in C) = \iint_C f(x_1, \dots, x_n) dx_1, \dots, dx_n.$$

Ex: Suppose we have an experiment with

r possible outcomes, with the i th outcome occurring with probability p_i , such that all are exclusive, $\sum_i p_i = 1$.

Suppose that we perform the experiment n times.

Let X_i be the number of experiments with outcome i . Then the joint distribution

$$P(X_1=n_1, \dots, X_r=n_r) = \frac{n!}{n_1! \dots n_r!} p_1^{n_1} p_2^{n_2} \dots p_r^{n_r}$$

when $\sum n_i = n$, is called the multinomial distribution.

When $r=2$, then we have the binomial distribution.

Independent Random Variables.

Defn: We say that RVs X and Y are independent iff for any sets $A, B \subseteq \mathbb{R}$,

$$\underbrace{P(X \in A, Y \in B)}_{= P((x,y) \in A \times B)} = P(X \in A)P(Y \in B)$$

i.e. the events " $X \in A$ " and " $Y \in B$ " are independent for any $A, B \subseteq \mathbb{R}$.

It can be shown that X and Y are independent iff, for all $a, b \in \mathbb{R}$,

$$P(X \leq a, Y \leq b) = P(X \leq a)P(Y \leq b).$$

Thus, if $F(x, y)$ is the joint cdf of X and Y , then X and Y are independent iff

$$F(x, y) = F_X(x)F_Y(y),$$

where $F_X(x)$ and $F_Y(y)$ are the marginal cdf's of X and Y , respectively ($\frac{d}{dx}F_X(x) = f_X$, $\frac{d}{dy}F_Y(y) = f_Y$ if we are in the continuous setting).

If X and Y are discrete, then X and Y are independent iff $p(x, y) = P_X(x)P_Y(y)$ (see text for verification).

If X and Y are jointly continuous, we have an analogous result: X and Y are independent iff $f(x,y) = f_x(x) f_y(y)$.

Example (Buffon's Needle).

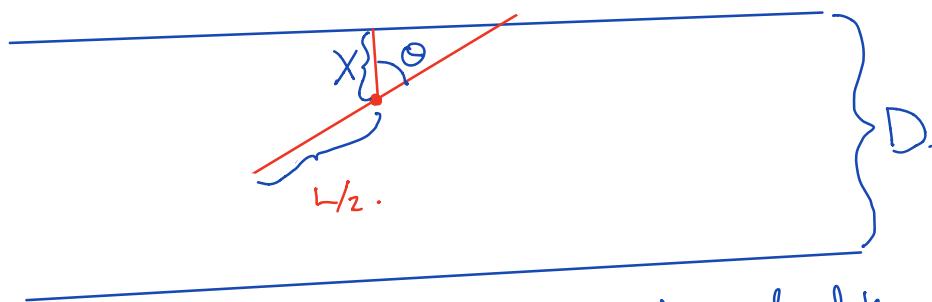
- Suppose we have a table ruled with equidistant lines, each distance D

- A needle with length $L \leq D$

is thrown on the table.

- What is the probability that the needle intersects a line (if it does not intersect a line, it must be contained in a strip between 2 lines).

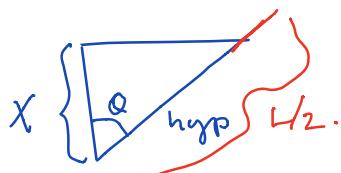
- we specify the position of the needle as follows:



↳ X is the distance from the mid point of the needle and the closest line.

↪ θ is the angle between the segment joining the middle of the needle to the closest line (of length X) and the needle itself.

Consider the triangle cut out by the needle, the perpendicular and the line:



- Then $\cos(\theta) = \frac{X}{\text{hyp}}$, so $\text{hyp} = \frac{X}{\cos\theta}$

- Observe that the needle intersects the line iff $\text{hyp} = \frac{X}{\cos\theta} < \frac{L}{2}$ i.e. $X < \frac{L}{2} \cos\theta$.

- Now, $0 \leq X \leq D/2$ and $0 \leq \theta \leq \pi/2$, and X and θ are uniform random variables.

$$\begin{aligned} \text{Therefore: } P\left(X < \frac{L}{2} \cos\theta\right) &= \iint_{x < \frac{L}{2} \cos\theta} f_X(x) f_\theta(y) dx dy \\ &= \iint_{x < \frac{L}{2} \cos(y)} \left(\frac{2}{D}\right) \left(\frac{2}{\pi}\right) dx dy \\ &= \frac{4}{D\pi} \iint_{x < \frac{L}{2} \cos(y)} dx dy = \frac{4}{D\pi} \int_0^{\pi/2} \int_0^{L/2 \cos(y)} dx dy = \frac{4}{D\pi} \int_0^{\pi/2} \frac{L}{2} \cos y dy \\ &= \frac{2L}{\pi D}. \end{aligned}$$

Let $p = P(\text{needle intersects line})$. Then
 $p = \frac{2L}{\pi D} \Rightarrow \pi = \frac{2L}{pD}$.

This gives us a way of estimating π ! Throw a

need on the table 100 times. If N is the # of times the needle crosses the line, then $P \approx \frac{N}{100}$,

$$\text{so } \pi \approx \frac{2L}{D} \left(\frac{100}{N} \right).$$
